全国统一服务热线

0564-3929333

2018"全球十大突破性技术"

发布日期:2018-04-08  浏览次数:143

3月25日,《麻省理工科技评论》正式揭晓2018年“全球十大突破性技术”。


1、实用型3D金属打印机
      虽然3D打印技术技术已经存在了几十年,但它之前仍然局限在业余爱好者和设计师的小圈子内,只是用来制造一次性原型。而且,之前的3D打印技术使用任何非塑料材料(尤其是金属)时,成本非常昂贵,速度也慢得让人无法接受。
不过现在,随着成本越来越低,使用也越来越简单,这项技术有望成为可用于零部件生产的实用技术。如果它被广泛应用,将有可能改变我们大规模量产产品的方式。
        2017年,来自劳伦斯·利弗莫尔国家实验室(LawrenceLivermoreNationalLaboratory)的研究人员宣布他们研发出了一种3D打印不锈钢零部件的方法,通过这种方法生产出来的零部件的强度是通过传统方法生产出来的两倍。
        同样在2017年,位于波士顿附近的3D打印初创公司Markforged发布了第一台价格在10万美元以下的3D金属打印机。
       而另一家位于波士顿地区的3D打印初创公司DesktopMetal也在2017年12月开始交付他们的第一台3D金属原型打印机。该公司还计划推出体积更大的、用于工业制造的打印机,它们的速度将会比之前的3D金属打印机快100倍。
       短期来看,有了这项技术后,制造商们将不再需要维持大量的库存,他们可以按需地打印一个部件。比如说,当顾客需要给旧车替换一个零部件的时候,就可以立即提供给他。
       长期来看,那些大规模生产某一特定零部件的大工厂将会被产品线丰富的小工坊所取代。这些小工坊将能按照顾客的需求随时打印出各种各样的零部件。
       根据美国材料试验学会旗下F42技术委员会订定的相关标准,将增材制造,也就是俗称的3D打印,分为七大类技术方法,目前应用在“金属”的打印主要有四种技术,分别为金属粉床熔化(PBF,PowderBedFusion)、雷射金属沉积(LMD,LaserMetalDeposition)、黏着剂喷涂成型(BinderJetting),以及分层实体制造(LOM,LaminatedObjectManufacturing)。
       在上述的技术中,现阶段最被看好且应用最多的是金属粉床熔化,在列印时披上一层粉末,再透过雷射进行烧熔出想要的形状,两点重要的原因:可以制作出各种复杂形状的产品,以及如果金属粉末控制得宜,就能做出精致度很好的产品。举例来说,25微米(Micrometer)的金属粉末颗粒就能打印出表面细致度是25微米的产品,如果把金属粉末颗粒缩小至2~5微米,就可达到表面细致度就是2~5微米,就会比传统CNC制程做出的更漂亮,但前提是金属粉末必须控制得宜。
       但相较于传统的铸造或锻造工法,3D金属打印还有几个阻碍,一是机器设备以及金属粉末的成本都仍偏高,二是尽管目前3D金属打印已经来到了四支雷射喷头可同时工作,但以用户的角度来看,速度还是慢。


2、零知识验证——完美的网络隐私
      对于很多加密货币,尽管理论上来说,这些交易都是匿名的,但通过与其他数据进行结合,还是可以追踪到甚至识别出交易人。然而,零知识验证技术却有助于真正解决这个问题。而且有望进一步帮助实现真正的互联网隐私。
       举个例子,该工具可以让你不用透露出生日期就能证明自己年满18岁,或者不用透露自己的银行余额或其他细节,就能证明自己在银行有足够的存款可以完成金融交易。这样就大大降低了隐私泄漏或身份盗用的风险。
       尽管研究人员已经研究了几十年,但直到去年人们对零知识验证的兴趣才开始暴增,某种程度上,这要得益于人们对加密货币日益增长的热情。同时,很大一定程度上也得益于2016年末建立的电子货币——Zcash把零知识验证应用于实际。Zcash的研发人员使用一种叫做zk-SNARK(简明非交互零知识验证)的方法让用户进行匿名交易。通常,这在比特币以及其他公共区块链系统中是不可能实现的,比特币以及其他公共区块链系统中的交易对所有人都是公开透明的。
       不过尽管zk-SNARK承诺种种好处,但计算量大,运行缓慢。同时,zk-SNARK需要“信任安装”,所生成的密钥如果落入坏人之手就可以破坏整个系统。不过,研究人员正在努力研究替代方案,希望可以更加高效地部署零知识验证,同时不需要上述密钥。
 
3、零碳排放天然气发电
      在可预见的未来,我们可能要一直将天然气作为主要的发电能源之一。现成又便宜的天然气发出的电占美国总发电量的30%,全世界发电量的22%。天然气虽然比煤炭清洁得多,仍造成了大量的碳排放,而现有技术体系通常是进一步增设CO2吸附、脱硫脱硝、降灰等环保装置来实现。
       然而,这些手段大都是补救性质的,会增加发电成本和能耗,降低经济效益。而现在,美国能源公司NetPower彻底摒弃传统的以水蒸气为工质的热能循环过程,选用全新的以高压高温超临界CO2为介质的Allam循环过程。这样就从本质上解决了CO2排放和NOx污染的问题,且回收的CO2还变废为宝,可应用于采油或作为化工原材料等利用。
       该技术发电综合效率更高,设施大幅简化,固定投资少,占地面积小。如果该技术成熟并实现产业化,将引领热力发电领域的技术革命,不仅对天然气发电意义重大,对煤电领域也有非常重要的参考价值。

 

4、人造胚胎
      英国剑桥大学的胚胎学家们利用干细胞培育出了一种逼真的小鼠胚胎。值得一提的是,该胚胎并不是由卵细胞与精子结合而来的,只使用了从另一个胚胎中得到的细胞。
       团队负责人Zernicka-Goetz称,她的“合成”的胚胎可能不会发育成老鼠。尽管如此,它们也意味着,我们很快就可以实现在没有卵子的情况下育出哺乳动物。
       据了解,人工合成的人类胚胎将是科学家们的福音,这可以让他们梳理出胚胎在早期发展中经历的过程。而且,由于这些胚胎是从易操作的干细胞发展而来的,实验室将能够使用各种工具,例如基因编辑技术,在它们生长的过程中对它们进行研究。


5、对抗性神经网络
      人工智能识别物体的能力已经越来越强了:给它看一百万张图片,它就可以用惊人的准确度来告诉你究竟哪张里面有个行人在过马路。但是AI几乎不可能独自生成行人的图片。如果它可以实现这一点,它将可以创造大量看似真实的合成图片,把行人放在各种环境下。而自动驾驶系统或许足不出户就能使用这些图片进行训练。
       但问题在于,从无到有创造一个东西需要想象力,而这正是人工智能技术一直难以实现的能力。
       直到2014年,当时还是蒙特利尔大学博士生的IanGoodfellow突然想到了这个问题的答案,这就是“对抗式生成网络”(GAN)。
       “对抗式生成网络”使用两个神经网络,而且使用同一个数据集进行训练。其中一个神经网络叫生成网络,它的任务就是依照所见过的图片来生成新的图片,比如一个多长一条手臂的行人。而另外那个神经网络叫判别网络,它的任务则是判断它所见得图片是否与训练时的图片相似,还是由生成模型创造出来的“假货”,比如,判断那个长着三个手臂的人有没有可能是真的?
       慢慢的,生成网络创造图片的能力会强到无法被判别网络识破的程度。基本上,经过训练之后,生成网络学会了识别并创造看起来十分真实的行人图片。
       这项技术已经成为了在过去十年最具潜力的人工智能突破,帮助机器产生甚至可以欺骗人类的成果。一些专家相信,GAN在某种程度上已经开始理解它们所见到,所听到的世界的底层结构。而这意味着,随着人工智能开始获得想象力,它们也可能开始理解它在这世界上所看到的东西。
       不过,GAN的成果并非完美:它们可能生成有两套把手的自行车,或者眉毛错位的脸。
 
6、云端AI——给所有人的人工智能
      人工智能一直以来都只是亚马逊、百度、谷歌和微软等大型科技公司,以及少数初创公司的玩物。对于其他领域的众多公司来说,人工智能太贵也太难,无法全面普及。
       这个问题该如何解决?基于云端的机器学习工具正在将人工智能带给更广泛的群体。如今,亚马逊旗下的AWS子公司几乎统治了云AI市场。谷歌则试图通过TensorFlow这款可以开发机器学习系统的开源人工智能框架来挑战它的地位。而谷歌近日刚公开的CloudAutoML也是一套经过预先训练,可以让人工智能变得更容易使用的系统。
 
7、基因占卜
      将来有一天,婴儿出生时就会得到一份DNA检测报告。这些报告将提供婴儿患心脏病或癌症的几率、是否对烟草上瘾,以及是否比一般人更聪明的预测。由于大型基因研究(部分研究涉及人数超过100万人)的开展以及科学进步,这样的报告很快就会从概念变成现实。
       尽管新的DNA测试只是提供了概率推断,而不是直接得出诊断结论,但依然可以极大地造福医学的发展
 
8、传感城市
      如今,全球很多智慧城市计划都已搁浅,要么下调了曾经雄心勃勃的目标,要么因为生活成本原因逼走了超级富豪之外的普通居民。而多伦多的一个叫Quayside的项目,却希望从头开始重新设计一个社区,用最新的数字技术将其重建,打破现有的失败局面。
        Alphabet旗下位于纽约市的SidewalkLabs将和加拿大政府进行合作,让这一高科技项目落地在多伦多Waterfront工业区。
       该项目的目标之一就是让一切关于设计、政策以及信息科技的决策都以一个巨大的传感器网络为基础。这个网络将收集各种信息:空气质量、噪声水平以及人们的行为等数据。
       在该规划中,一切车辆都是自动驾驶的共享车辆,地下也将跑着负责送快递这种低级体力劳动的机器人。SidewalkLabs表示,他们计划让正在设计的软件与系统开源,可以允许其他公司在其上创建服务,类似为手机开发APP的做法。
 
9、巴别鱼耳塞——ai翻译
在风靡一时的科幻经典《银河系漫游指南》中,你把一条黄色的巴别鱼塞到耳朵里,就可以听到实时翻译。在现实世界中,谷歌已经研究出了一个过渡性的解决方案:一副叫做PixelBuds价值159美元的耳塞。这副耳塞可以在Pixel智能手机上通过谷歌翻译应用进行实时翻译。需要一个人佩戴耳塞,另一个人手持手机。
       谷歌翻译之前就已经有了对话功能,其iOS和安卓版应用都可以自动识别说话者的语言,然后自动翻译。但背景噪音会增加应用理解话语的难度,同时也会让应用很难判断说话人何时停顿,何时开始翻译。PixelBuds有效解决了这些问题,因为佩戴人可以在说话的同时用手指点击和长按右边的耳塞。将交互分别放在智能手机和耳塞上,可以让双方都能控制麦克风。
 
10、材料的量子飞跃
      新型量子计算机功能强大,不过它的发展道路上依然笼罩着一层迷雾:量子计算机有着当今计算机无法比拟的计算力,但是我们至今尚未弄清楚这种能力能被用来做什么。一个前景无限的应用方向正在向量子计算机招手:精确分子设计。
       未来,科学家可以利用这项技术设计出新型蛋白质,用于研制更有疗效的药物,或是设计出新型高效电池中的电解质、直接将太阳能转化为液态燃料的神奇化合物以及更高效的太阳能电池。
      然而,量子计算还有不少需要突破的地方,首先,量子计算的精度相当低,虽然用在深度学习等精度需求不高的计算上相当合适,但要处理传统计算机的通用计算工作,可能就力有未逮了。其次,量子计算这种高度并行的计算环境需要框架的适配,以及编译器的针对性优化,这种开发逻辑与现有的计算架构完全不同。



新闻来源:OFweek物联网

免责声明: 本站资料及图片来源互联网文章,本网不承担任何由内容信息所引起的争议和法律责任。所有作品版权归原创作者所有,与本站立场无关,如用户分享不慎侵犯了您的权益,请联系我们告知,我们将做删除处理!